Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 241, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012629

RESUMO

BACKGROUND: In whole-cell bio-catalysis, the biosystems engineering paradigm shifts from the global reconfiguration of cellular metabolism as in fermentation to a more focused, and more easily modularized, optimization of comparably short cascade reactions. Human milk oligosaccharides (HMO) constitute an important field for the synthetic application of cascade bio-catalysis in resting or non-living cells. Here, we analyzed the central catalytic module for synthesis of HMO-type sialo-oligosaccharides, comprised of CMP-sialic acid synthetase (CSS) and sialyltransferase (SiaT), with the specific aim of coordinated enzyme co-expression in E. coli for reaction flux optimization in whole cell conversions producing 3'-sialyllactose (3SL). RESULTS: Difference in enzyme specific activity (CSS from Neisseria meningitidis: 36 U/mg; α2,3-SiaT from Pasteurella dagmatis: 5.7 U/mg) was compensated by differential protein co-expression from tailored plasmid constructs, giving balance between the individual activities at a high level of both (α2,3-SiaT: 9.4 × 102 U/g cell dry mass; CSS: 3.4 × 102 U/g cell dry mass). Finally, plasmid selection was guided by kinetic modeling of the coupled CSS-SiaT reactions in combination with comprehensive analytical tracking of the multistep conversion (lactose, N-acetyl neuraminic acid (Neu5Ac), cytidine 5'-triphosphate; each up to 100 mM). The half-life of SiaT in permeabilized cells (≤ 4 h) determined the efficiency of 3SL production at 37 °C. Reaction at 25 °C gave 3SL (40 ± 4 g/L) in ∼ 70% yield within 3 h, reaching a cell dry mass-specific productivity of ∼ 3 g/(g h) and avoiding intermediary CMP-Neu5Ac accumulation. CONCLUSIONS: Collectively, balanced co-expression of CSS and SiaT yields an efficient (high-flux) sialylation module to support flexible development of E. coli whole-cell catalysts for sialo-oligosaccharide production.


Assuntos
Escherichia coli , N-Acilneuraminato Citidililtransferase , Humanos , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Bioengenharia , Sialiltransferases/genética , Sialiltransferases/metabolismo , Catálise
2.
Biotechnol Bioeng ; 119(9): 2374-2387, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35510396

RESUMO

While O2 substrate for bio-transformations in bulk liquid is routinely provided from entrained air or O2 gas, tailored solutions of O2 supply are required when the bio-catalysis happens spatially confined to the microstructure of a solid support. Release of soluble O2 from H2 O2 by catalase is promising, but spatiotemporal control of the process is challenging to achieve. Here, we show monitoring and control by optical sensing within a porous carrier of the soluble O2 formed by an immobilized catalase upon feeding of H2 O2 . The internally released O2 is used to drive the reaction of d-amino acid oxidase (oxidation of d-methionine) that is co-immobilized with the catalase in the same carrier. The H2 O2 is supplied in portions at properly timed intervals, or continuously at controlled flow rate, to balance the O2 production and consumption inside the carrier so as to maintain the internal O2 concentration in the range of 100-500 µM. Thus, enzyme inactivation by excess H2 O2 is prevented and gas formation from the released O2 is avoided at the same time. The reaction rate of the co-immobilized enzyme preparation is shown to depend linearly on the internal O2 concentration up to the air-saturated level. Conversions at a 200 ml scale using varied H2 O2 feed rate (0.04-0.18 mmol/min) give the equivalent production rate from d-methionine (200 mM) and achieve rate enhancement by ∼1.55-fold compared to the same oxidase reaction under bubble aeration. Collectively, these results show an integrated strategy of biomolecular engineering for tightly controlled supply of O2 substrate from H2 O2 into carrier-immobilized enzymes. By addressing limitations of O2 supply via gas-liquid transfer, especially at the microscale, this can be generally useful to develop specialized process strategies for O2 -dependent biocatalytic reactions.


Assuntos
Enzimas Imobilizadas , Metionina , Aminoácidos , Catalase , Enzimas Imobilizadas/química , Peróxido de Hidrogênio , Porosidade
3.
Biotechnol Bioeng ; 118(11): 4290-4304, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289079

RESUMO

Sialo-oligosaccharides are important products of emerging biotechnology for complex carbohydrates as nutritional ingredients. Cascade bio-catalysis is central to the development of sialo-oligosaccharide production systems, based on isolated enzymes or whole cells. Multienzyme transformations have been established for sialo-oligosaccharide synthesis from expedient substrates, but systematic engineering analysis for the optimization of such transformations is lacking. Here, we show a mathematical modeling-guided approach to 3'-sialyllactose (3SL) synthesis from N-acetyl- d-neuraminic acid (Neu5Ac) and lactose in the presence of cytidine 5'-triphosphate, via the reactions of cytidine 5'-monophosphate-Neu5Ac synthetase and α2,3-sialyltransferase. The Neu5Ac was synthesized in situ from N-acetyl- d-mannosamine using the reversible reaction with pyruvate by Neu5Ac lyase or the effectively irreversible reaction with phosphoenolpyruvate by Neu5Ac synthase. We show through comprehensive time-course study by experiment and modeling that, due to kinetic rather than thermodynamic advantages of the synthase reaction, the 3SL yield was increased (up to 75%; 10.4 g/L) and the initial productivity doubled (15 g/L/h), compared with synthesis based on the lyase reaction. We further show model-based optimization to minimize the total loading of protein (saving: up to 43%) while maintaining a suitable ratio of the individual enzyme activities to achieve 3SL target yield (61%-75%; 7-10 g/L) and overall productivity (3-5 g/L/h). Collectively, our results reveal the principal factors of enzyme cascade efficiency for 3SL synthesis and highlight the important role of engineering analysis to make multienzyme-catalyzed transformations fit for oligosaccharide production.


Assuntos
Escherichia coli , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Modelos Biológicos , Oligossacarídeos/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Oligossacarídeos/genética
4.
Biotechnol Adv ; 44: 107613, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822768

RESUMO

Sialic acids are important recognition sites in protein- and lipid-linked glycans of higher organisms and of select bacteria and protozoa. They are also prominent in human milk oligosaccharides. Defined sialo-oligosaccharides have interesting applications in chemical glycobiology and represent emerging ingredients for health-related nutrition. The growing demand for sialo-oligosaccharides has promoted developments in multidisciplinary carbohydrate synthesis, with approaches by cascade bio-catalysis having a leading role. The key synthetic step involves catalysis by sialyltransferases (EC 2.4.99.-) and consists in attaching sialic acid from a cytidine 5'-monophosphate-activated donor (CMP-sialic acid) to the nascent oligosaccharide acceptor. Sialyltransferases from bacteria, in general, show convenient properties for application (e.g., relative ease of recombinant production; high specific activity and operational stability). Here, we review salient characteristics of the bacterial sialyltransferases active on d-galactose- and N-acetyl-d-galactosamine-containing acceptors and highlight advances of their development into efficient biocatalysts. We also show integration of these sialyltransferases into multistep enzymatic cascades for sialo-oligosaccharide (e.g., sialyllactose) production from expedient substrates, using in situ formation of the CMP-sialic acid donor. We summarize functional parameters of the enzymes for CMP-sialic acid supply and analyze multi-enzymatic synthesis of sialo-oligosaccharides from a reaction engineering point of view. We discuss opportunities of sialyltransferase cascades for efficient sialo-oligosaccharide production in vitro and in vivo.


Assuntos
Oligossacarídeos , Sialiltransferases , Bactérias , Humanos , Ácido N-Acetilneuramínico , Polissacarídeos , Sialiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...